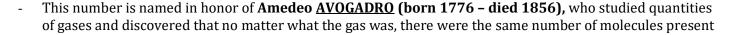


If you are a student that <u>HAS</u> access to technology, this is not the packet for you. This packet is for students who pick up and drop off their work at the front office every week. If you have access to technology, please go back to your teacher's website and complete the correct assignment.


Name:	Period:	Teacher:	I. Richardson

Distance Learning Week 5: May 4th to May 10th

Assignment 5.1 – What is a Mole?

Please read the following:

- The **mole** is a counting unit (similar to a dozen)
 - Except instead of 12, it's 602 billion trillion 602,000,000,000,000,000,000,000
 - o It is commonly written as: 6.02 X 10²³ (in scientific notation)
- The mole works just like other counting units
 - 1 dozen cookies = 12 cookies 1 mole of cookies = 6.02×10^{23} cookies
 - 1 dozen cars = 12 cars 1 mole of cars = 6.02×10^{23} cars
 - 1 pair of shoes = 2 shoes 1 mole of shoes = 6.02×10^{23} cars

o So 6.02 x 10²³ is known as Avogadro's Number

Learning Check – please circle the correct answer

- 1. How many sulfur atoms are in a mole of sulfur atoms?
 - a. 12 atoms
 - b. 602 atoms
 - c. 6.02×10^{23} atoms
 - d. 6.02×10^{12} atoms
- 2. Suppose we invented a new collection unit called a rapp. One rapp contains 8 objects. How many oranges are in 2.0 rapps?
 - a. 8 oranges
 - b. 12 oranges
 - c. 16 oranges
 - d. 6.02×10^{23} oranges

The coolest thing about the mole: you can find the mass of 1 mole of an atom by looking up its atomic mass from the periodic table! The mass of a mole of any compound is equivalent to the sum of the atomic masses of the elements that make up that compound! This means:

1 mole of atoms is 6.02×10^{23} atoms and has a mass of that atom's atomic mass!

Assignment 5.2: Calculating Molar Mass

How to calculate Molar mass:

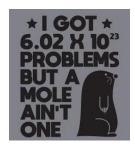
- 1. Look at the chemical formula of the compound
- 2. Find the Atomic Mass for each element (there is a periodic table on the last page of this packet!)
- 3. Add the totals together
- 4. Round to the nearest 0.01 place

Example 1:	Example 2:
Find the Molar Mass of SO ₃	Find the Molar Mass of Ba(NO ₃) ₂
1 S atom x 32.066 = 32.066 g/mol 3 O atoms x 15.999 = 47.997 g/mol	1 Ba atom x 137.327= 137.327 g/mol 2 N atoms x 14.007 = 28.014 g/mol
32.066 g/mol + 47.997 g/mol =80. 063 g/mol	6 O atoms x 15.999=95.994 g/mol 137.327 g/mol + 28.014 g/mol + 95.994 g/mol
The molar mass of SO ₃ is 80.06 g/mol	= 261.335 g/mol

The molar mass of Ba(NO₃)₂ is 261.34 g/mol

Calculate the molar mass and mass of 1 mole of each compound.

Show you work and don't forget units. Molar mass is in **grams/mole**. Mass is in **grams.**


1.	N ₂	Molar mass of N_2 1 mole of N_2 has a mass of
2.	H₂O	Molar mass of H ₂ O 1 mole of H ₂ O has a mass of
3.	CuCl ₂	Molar mass of CuCl ₂ 1 mole of CuCl ₂ has a mass of
4.	C ₆ H ₁₂ O ₆	Molar mass of $C_6H_{12}O_6$ 1 mole of $C_6H_{12}O_6$ has a mass of
5.	CaCO ₃	Molar mass of CaCO ₃ 1 mole of CaCO ₃ has a mass of
6.	(NH ₄) ₂ O	Molar mass of $(NH_4)_2O$ is 1 mole of $(NH_4)_2O$ has a mass of

Assignment 5.3: Moles and Mass Wrap Up

If you need additional space, show work on a separate page and turn in your work with your packet.

Part 1: Reviewing the mole

- 1. If I have "one mole" of atoms, how many atoms do I have?
- 2. If I have 3 moles of donuts, how many donuts do I have?
- 3. If I have ½ a mole of carbon, how many carbon atoms do I have?

Part 2: Molar Mass

Calculate the molar mass of each of the following. You must show all of your work to get credit for these problems. "I just did it in my calculator" is not an acceptable response. A periodic table is included as the last page of this packet!!!

- 4. KF
- 5. H₂S
- 6. NaNO₃
- 7. $Mg(OH)_2$
- 8. $Al_2(SO_4)_3$

Part 3: Using Molar Mass

Use the molar masses you calculated in part 2 above to answer the following questions. The table below shows an example problem. You must show all of your work to get credit for these problems. "I just did it in my calculator" is not an acceptable response.

Example: If I have 1 mole of KF, how much will it weigh? How many molecules will it be? What about 2 moles?

Moles KF	Mass/Weight	Molecules
1 mole KF	58.096 grams	6.02×10^{23} molecules
2 moles KF	2 x 58.096 = 116.192 grams	$2 \times (6.02 \times 10^{23}) = 12.04 \times 10^{23}$ molecules

- 9. How much will 1 mole of H₂S weigh?
- 10. How much will 0.50 moles of NaNO₃ weigh?
- 11. How much will 3 moles of Mg(OH)₂ weigh?
- 12. If I have about 68.2 grams of H₂S, how many moles do I have?
- 13. If I have about 342.15 grams of Al₂(SO₄)₃, how many molecules do I have?

5.1

- 1) 6.02×10^{23} atoms
- 2) 16 oranges

5.2

1. N ₂	Molar mass of N_2 28.01 g/mol	
	1 mole of N ₂ has a mass of 28.01g	
2. H₂O	Molar mass of H_2O 18.02g/mol	
	1 mole of H ₂ O has a mass of18.02g	
3. CuCl₂	Molar mass of CuCl ₂ 134.45g/mol	
	1 mole of CuCl ₂ has a mass of134.45g	=
4. C ₆ H ₁₂ O ₆	Molar mass of $C_6H_{12}O_6$ 180.16g/mol	
	1 mole of C ₆ H ₁₂ O ₆ has a mass of180.16g	
5. CaCO ₃ Mo	olar mass of CaCO ₃ 100.09g/mol	
	1 mole of CaCO₃ has a mass of100.09g	
6. (NH ₄) ₂ O	Molar mass of (NH ₄) ₂ O is52.08g/mol	
, ,	1 mole of (NH ₄) ₂ O has a mass of 52.08g	

- 5.3 Part 1
 - 1. If I have "one mole" of atoms, how many atoms do I have? 6.02×10^{23} atoms
 - 2. If I have 3 moles of donuts, how many donuts do I have? $3 \times 6.02 \times 10^{23}$ atoms = 1.81×10^{24} donuts
 - 3. If I have $\frac{1}{2}$ a mole of carbon, how many carbon atoms do I have? 6.02×10^{23} atoms / $2 = 3.01 \times 10^{23}$ carbon atoms

Part 2

- 4. KF = 58.10 g/mol
- 5. $H_2S = 34.10 \text{ g/mol}$
- 6. $NaNO_3 = 84.99 \text{ g/mol}$
- 7. $Mg(OH)_2 = 58.32 g/mol$
- 8. $Al_2(SO_4)_3 = 342.15g/mol$

Part 3

- 9. How much will 1 mole of H₂S weigh? 34.10 g
- $10.\,How\ much\ will\ 0.50\ moles\ of\ NaNO_3\ weigh?\ 42.50\ g$
- 11. How much will 3 moles of Mg(OH)₂ weigh? 174.96 g
- 12. If I have about 68.2 grams of H_2S , how many moles do I have? 2 moles (2.00 mols with sigfigs!)
- 13. If I have about 342.15 grams of $Al_2(SO_4)_3$, how many molecules do I have? 6.02×10^{23} molecule

14	•			Peri	iodic	Tabl	e of	Elem	ents								18
H Hydrogen 1.008	2											13	14	15	16	17	Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012				Key:	6 ————————————————————————————————————	- Syml - Name					5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
Na Sodium 22.99	Mg Magnesium 24.31	3	4	5	6	7	8	9	10	11	12	13 Al Aluminum 26.98	Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti	23 V Vanadium 50.94	24 Cr	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.41	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 TC Technetium (98)	44 Ru Ruthenium 101.1	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In Indium 114.8	50 Sn Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 I Iodine 126.9	54 Xe Xenon 131.3
55 Cs Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.9	75 Re Rhenium 186.2	76 Os Osmium 190.2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	80 Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
Francium (223)	88 Ra Radium 226	Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (277)	Mt Meitnerium (268)	110 Ds Darmstadtiu m (269)	Roentgeniu m (272)	Uub Ununbium (277)	113 Unit Ununtrium (284)	Uuq Ununquadiu m (289)	115 Uup Ununpentiu m (288)	112 Uub Ununhexiu m		

^{**}Note, lanthanide and actinides have been removed so it fits on one page